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The breaking of a phosphate ester bond is important in many
areas such as the destruction of nerve agents (Sarin and VX),
pesticides (chloropyrifo®),and in biological systemsin recent
years, methods for the catalytic cleavage of theCPbond in
phosphate esters have been develdpédst of these are binuclear
systems use d-block metals such as cobattpper® and zinc’
Boron compounds however, have not been examined in this regard,
despite the fact that BBwwill, through cleavage of the ©C bond,
dealkylate alkyl and aryl ethers (eq®land silyl ethers. This
reagent, however, is ineffective with phosphates since phosphorus
is electron-donating (thereby strengthening the atiodygen bond). Figure 1. Molecular structure and atom numbering scheme2f@elected
For example, BBy does not de-alkylate trimethyl phosphate (less Pond lengths (A) and angles (deg): B(I(1), 1.418(9); B(LyN(1),

_ . 1.517(9); B(1)-Br(1), 2.023(8); B(1)}Br(2), 2.077(9), O(1)}B(1)—N(1),
than 2% in 24 h). In an effort to determine whether the presence 115 gg): O(1}-B(1)-Br(1), 108.6(5); N(1}B(1)—Br(1), 112.2(5);
of a chelate ligand might improve the effectiveness of boron Br(1)-B-Br(2), 107.7(3).
bromides for this reaction, new binuclear boron compounds Salpen- ) ) )
(Bu)[BBr,], (1) and SalberBu)[BBr], (2) have been synthesizéd. gable 1.t Percent Dealkylation of Different Phosphates with
< alpen(Bu)[BBr2]2 (1)
These compounds catalytically dealkylate a broad range of phos

phate esters through cleavage of ar@bond. phosphate conversion (%)°
The binuclear boron bromided @nd 2) are prepared in high (MeO)%P(O) 89
yields by combining Salpelu)[B(OMe)], }* or SalbenBu)- (ELO)XP(0) 63
[B(OMe),]. 1* with a stoichiometric amount of BBi(eq 2)12 The EnEgSt)gF;,go(g) gg
1B NMR shows a broad single peak ftirand2 at 6 —0.57 and (MeO)YP(O)H 85
—0.40 ppm, upfield from the related chloride analogue Salpen- (MeOxP(O)Me 99
(‘BU)[BCl,]2 13 (6.21 ppm). (PrORP(O)H 63
(PhOX((2-Et)HexO)P(O) 71

(Me3sSiOxP(0) 98

1) BBr,
- . . 1 (PhO}P(O) 0
@-—o\ ) @-on MeBr (D

a8 The percent conversion was determined by the amount of phosphate
remaining to the amount of alkyl bromide produced in theNMR.

LB(OMe),l, _*3BBrs L{BBry]; @

L=Sa]pen(:Bu) - 4/3 B(OMe)3 cation formation also takes place when excessz;B8rdded to
Salben('Bu) compound1.1®

In the structur& of 2 (Figure 1), the boron atoms are in a
distorted tetrahedral geometry and trans to one another. The angle
of the ligand (N-B—0) is 112.8(6), which is slightly larger than R = Me. Et, 'Pr, "Bu, "Pent, SiMes, 2-ethylhexyl
other Salen-supported binuclear systems such as Sén( L = Salpen(‘Bu)

[B(OSiPhy),]2 15 (angle= 104.9(3¥). The B—-Br bond lengths are

2.023(8) and 2.077(9) A fa?, which are slightly longer than those Since SalperiBu)[BBr;], (1) can be generated in situ from
for other four-coordinate boron dibromide compounds such as [(2- SalpenBu)[B(OMe),], and BBE, the process can be made catalytic.
Me,NCH,)CgH4]BBr, (with B—Br bond distances of 2.01(1) and The dealkylation of trimethyl phosphate occurs within 5 min
2.02(1) A6 through the addition of catalytic amounts of borate to equimolar

SalpenBu)[BBr,], cleaves an ©C bond in a multitude of trimethyl phosphate and BBin the trimethyl phosphate tbratio
phosphate esters (Table T)When combined with stoichiometric ~ of 20:12° SalpenBu)[B(OMe),], dealkylates (MeQP(O) (75%
amounts of various phosphatek,produces alkyl bromides and  conversion) with BBgwithin 30 min at a substrate-to-catalyst ratio
chelated boron phosphates (eq 3). Simple and sterically encumbereaf 200:1. Addition of BBg or the borate alone does not effect
(P—O—C) linkages that possess primary and secondary sp dealkylation within 24 h. The boron bromide compounds show
o-carbons are cleaved. excellent activity toward the dealkylation of different phosphates.

The mechanism appears to be one in which a cationic intermedi- The activity of the boron halide compounds does not decrease with
ate [(chelate)BBrj coordinates the phosphate, allowing a nucleo- the extension of the alkyl chain on the phosphates. However, the
philic attack by the bromide at the-carbon. Such cations appear activity of the boron halide compounds shows a slight decrease
readily accessible by the simple addition of a Lewis B&sEhe with the branched phosphates such as (R{{®Et)HexO)P(O). A

L{BBr,], + 4 (PhO),P(O)OR ——= 4 RBr + L[B(OP(O)(OPh),),]> (3)
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further positive attribute of this system is that these reactions can
be conducted at room temperature. Unlike the synthetic enzyme
models, the €O cleavage appears to occur at only one metal site.
For example, preliminary results show that the compound N, -tert-
butyl (salicylideneimine) dealkylates trimethyl phosphate. Thus, this
might be a general reaction for any type of chelate.

The phosphates dealkylated in this report may be viewed as
models for the nerve agent Sarin and the pesticide chloropyrifos
since they have similar PO—C units. Thus, chelated boron
bromides appear to be promising candidates for the decontamination
of chemical warfare agents such as VX and Sarin gas under organic
conditions. More specifically, they may be more efficient than
conventional decontamination systems that use hydroxide sdrces.
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